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Pre-exposure of abundant species to 
disturbance improves resilience in microbial 
metacommunities
 

Johannes Cairns    1,2,3,4, Shane Hogle    1, Elizaveta Alitupa1, Ville Mustonen    3,5 &  
Teppo Hiltunen    1 

Understanding factors influencing community resilience to disturbance 
is critical for mitigating harm at various scales, including harm from 
medication to gut microbiota and harm from human activity to global 
biodiversity, yet there is a lack of data from large-scale controlled 
experiments. Factors expected to boost resilience include prior exposure 
to the same disturbance and dispersal from undisturbed patches. Here 
we set up an in vitro system to test the effect of disturbance pre-exposure 
and dispersal represented by community mixing. We performed a serial 
passage experiment on a 23-species bacterial model community, varying 
pre-exposure history and dispersal rate between three metacommunity 
patches subjected to different levels of disturbance by the antibiotic 
streptomycin. As expected, pre-exposure caused evolution of resistance, 
which prevented decrease in species abundance. The more abundant the 
pre-exposed species had been in the undisturbed community, the less the 
entire community changed. Pre-exposure of the most dominant species 
also decreased abundance change in off-target species. In the absence of 
pre-exposure, increasing dispersal rates caused increasing spread of the 
disturbance across the metacommunity. However, pre-exposure kept the 
metacommunity close to the undisturbed state regardless of dispersal rate. 
Our findings demonstrate that pre-exposure is an important modifier of 
ecological resilience in a metacommunity setting.

Ecological disturbances are events causing ecosystem change1. They 
vary in magnitude, frequency and extent, with durations ranging from 
discrete, short-term pulse disturbances to long-term or continuous 
press disturbances2,3. Currently, ecosystems on Earth are experiencing 
unprecedented disturbances owing to human activity. These include 
disturbances associated with global climate change, such as atmos-
pheric increases in carbon dioxide, as well as those caused by using pes-
ticides, herbicides and pharmaceuticals in agriculture and medicine.

To mitigate unwanted effects of ecological disturbances, it is criti-
cal to develop a mechanistic understanding of disturbance response4. 
In particular, this means understanding the conditions where distur-
bances compromise the structure or function, that is, the resilience 
of ecosystems. There exist two frameworks on resilience. The engi-
neering resilience framework is focused on the return of a system 
to its pre-disturbance state, and can be partitioned into withstand-
ing change during a disturbance (that is, ecological resistance) and 
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(and potentially last) of these mechanisms. While microorganisms 
are known to rapidly evolve resistance to various stressors in one- and 
two-species setups, only a few controlled studies have examined rapid 
microbial evolution or its ecological effects in larger communities11–15. 
We recently subjected a multispecies microorganism community to 
antibiotic pulse disturbance and found that the intrinsic competitive 
fitness and antibiotic susceptibility traits of the species primarily 
drove ecological changes despite the emergence of antibiotic resist-
ance mutations16. However, in line with ecological literature, such 
evolutionary trait changes could affect the community response to 
future disturbances. To test this in the study at hand, we individually 
pre-exposed each species in a 23-species model bacterial community 
to gradually increasing and ultimately high levels of antibiotic distur-
bance, using the aminoglycoside antibiotic streptomycin. This was 
followed by phenotyping and whole-genome sequencing thus obtained 
populations to identify associated trait evolution. We then constructed 
communities with different pre-exposure histories for use in a serial 
passage experiment to test for disturbance response (Fig. 1a).

post-disturbance recovery5. The ecological resilience framework is 
focused on the degree and type of disturbance required to drive a 
system into a different state (that is, tipping point, causing a regime 
shift)6. In this study, we examine a system experiencing a constant 
press disturbance and therefore adopt the latter framework, seeking 
to identify conditions driving or preventing clear shifts in the system. 
It is critical to understand when a clear shift occurs in the state of an 
ecosystem as this can impair ecosystem functioning or even result in 
community collapse7–9.

Previous research has identified numerous factors influencing 
resilience in species communities, including disturbance intensity, fre-
quency, timing and spatial extent, and the biological level affected9,10. 
Here we focus on two key factors: pre-exposure and dispersal. First, 
past disturbances (that is, pre-exposure) can prime communities to 
better cope with future disturbances through mechanisms includ-
ing rapid trait evolution, epigenetics and maintenance of trait diver-
sity (via genetic heterogeneity or phenotypic plasticity)9. In this 
study, we use rapidly evolving microorganisms, stressing the first  
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Fig. 1 | Design of experiment to test effect of pre-exposure and community 
mixing rate on disturbance response in multispecies community. a, The 
experimental system consisted of a 23-species bacterial model community 
where evolutionary history H was modified by pre-exposing each species in a 
monoculture to the disturbance, the antibiotic streptomycin and constructing 
communities with no pre-exposed species, one among three abundant species 
being pre-exposed or all 23 species being pre-exposed. b, These communities 
were each subjected to a regime of three rates of community mixing M (no, low 
or high) between three patches experiencing different levels of disturbance 
(patch harshness D: no, low or high antibiotic level), thereby constituting 
metacommunities. Each unique treatment combination was replicated four 
times, making up a total of 180 communities (five pre-exposure treatments, 

three rates of community mixing, three disturbance patches and four replicates). 
Communities were serially passaged (1% volume) to fresh medium every 48 h 
for 22 transfers (46 days). Low and high rates of community mixing (modelling 
connectivity and migration) were implemented by globally mixing communities 
from all three patches before serial transfer every three or six transfers, 
respectively. c, To test the study questions, high-throughput sequencing was 
used to quantify the community state C at the experimental end point, and clones 
were isolated to test for resistance phenotypes in the different treatments. 
These data were used to estimate divergence of communities ΔC from the 
no-disturbance, no-mixing baseline (dashed horizontal line as measured at 
the experimental end point) within each pre-exposure history as a proxy for 
ecological resilience.
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Dispersal is another critical factor affecting resilience. Commu-
nities are typically nested within patches in a metacommunity with 
varying magnitudes of dispersal (connectivity)17. Dispersal drives 
diversity, increasing local patch (alpha) diversity and decreasing meta-
community (beta) diversity14,18. Dispersal varies in rate and scale, from 
small subpopulations to entire communities (community coalescence) 
common to microorganisms, with higher dispersal levels expected 
to strengthen dispersal effects19,20. However, not many studies have 
investigated the effect of dispersal rate on the disturbance response 
of communities. Findings from a recent study suggest that disper-
sal between communities experiencing low-level disturbance can 
improve community resilience (for example, restoring lost species), 
while dispersal between communities experiencing high-level dis-
turbance can decrease community resilience (for example, driving 
extinction of weaker competitors)21. Dispersal from an undisturbed to 
a disturbed patch can boost resilience in a manner akin to source–sink 
dynamics16,22. By contrast, dispersal from a disturbed to an undisturbed 
patch can spread the eco-evolutionary effects of the disturbance to 
undisturbed communities23,24.

While the effects of pre-exposure to disturbance and dispersal on 
the community response to disturbance have received some attention, 
there is virtually no experimental evidence on the combined influence 
of these two factors. In the absence of pre-exposure, dispersal from 
disturbed patches should spread effects of the disturbance across 
the metacommunity. A higher dispersal rate should strengthen this 
effect. However, by boosting community resilience, pre-exposure to 
disturbance should also prevent change of the metacommunity. Higher 
dispersal rates should have little bearing on the outcome, potentially 
decreasing metacommunity diversity.

To test the effect of pre-exposure and dispersal rate on ecological 
resilience, we performed a full-factorial serial passage experiment for 
the 23-species model bacterial community with five pre-exposure histo-
ries: communities containing (1) only naive (ancestral) species, (2–4) a 
streptomycin pre-exposed population of one of three abundant species 
or (5) disturbance pre-exposed populations of all species (Fig. 1a). We 
divided each of the communities into three patches, subjected to no 
disturbance, low disturbance level or high disturbance level (different 
concentrations of streptomycin). To model the effect of connectivity 
level, we subjected the sets of patches to three rates of community 
mixing (global connectivity, with entire communities from all three 
patches mixed): no, low (every sixth transfer) and high (every third 
transfer). The three patches subject to mixing constitute metacom-
munities. We collected ecological and phenotypic data for species 
frequencies and antibiotic resistance for communities at the end point 
of the serial transfer experiment, allowing us to test the conditions 
driving or preventing community change (Fig. 1b).

Results
Pre-exposure to disturbance caused trait evolution
We used a synthetic community of 23 Gram-negative bacterial spe-
cies isolated from soil, aquatic, plant, animal and human sources, as 
described earlier25. Most community members display quasi-stable 
co-existence over dozens of serial transfers16,25,26. As the species have 
been isolated from different environments, the presence of species 
interactions such as cross-feeding is uncertain. All the species can be 
cultured individually in uniform laboratory conditions, have refer-
ence genomes and have been phenotyped for various traits. These 
include the model disturbance for this study, streptomycin, with com-
munity members displaying a wide range of intrinsic susceptibility 
levels (Fig. 2a).

Pre-exposure of three abundant community members as mono-
cultures to increasing levels of streptomycin led to increased distur-
bance resistance for two of the species: Aeromonas and Pseudomonas 
chrororaphis (Fig. 2a; t-tests on half-maximal inhibitory concentra-
tion (IC50) values of ancestral versus pre-exposed populations with 

Bonferroni correction, P < 0.001; Supplementary Table 1). In turn, 
the species Citrobacter was already intrinsically resistant before 
pre-exposure (Fig. 2a).

Whole-genome sequence data for pre-exposed populations of the 
23 species supported trait evolutionary change (Fig. 2b). The predomi-
nant target of recurrent non-synonymous mutations reaching fixation 
or high allele frequency was the gene rpsL, encoding the streptomycin 
binding site in the small subunit of the ribosome, a known target of 
high-level streptomycin-resistance mutations27,28. These were also 
observed in two of the three abundant species used in the pre-exposure 
treatments: Aeromonas and P. chlororaphis. Moreover, recurrent muta-
tions occurred in rsmG previously associated with low-level strepto-
mycin resistance29.

One of the abundant species used in the pre-exposure treatment, 
Citrobacter, lacked mutations in rpsL, consistent with its intrinsic resist-
ance and lacking the selection pressure to evolve de novo resistance 
(Fig. 2a). Its phenotypic resistance is supported by genomic data, as 
it contains four genes (APH(3′)-Ib, APH(6)-Id, strA and strB) encoding 
aminoglycoside (including streptomycin) inactivating enzymes and 
seven genes (acrD, baeR, baeS, cpxA, cpxR, kdpE and tolC) encoding 
aminoglycoside efflux pumps25. Nevertheless, the pre-exposed popula-
tion of Citrobacter did contain one low-frequency (7.5%) mutation in 
the multidrug efflux encoding gene oprM30. In addition, there could be 
mutations such as structural variants that were not detected because 
of the use of short-read sequencing data.

Stronger disturbance led to stronger community change
In this study, we examine system change through changes in spe-
cies abundance (relative abundance which is also a proxy for bio-
mass), including alpha (within-community) diversity and beta 
(between-community) diversity. We examine alpha diversity through 
species richness and Shannon diversity, incorporating both species 
richness and evenness. We examine beta diversity, as previously16, 
through Kullback–Leibler (KL) divergence, which measures the relative 
entropy between two distributions (here, relative abundance vectors 
of communities) assuming values between 0 (perfect match) and ∞. 
KL divergence is more sensitive to small compositional changes at 
low abundances than Manhattan-based (for example, Bray–Curtis 
dissimilarity) and Euclidean-based measures31.

In the absence of dispersal, across the different pre-exposure 
histories, stronger disturbance led to a stronger change in community 
composition relative to the disturbance-free condition (permutational 
multivariate analysis of variance (PERMANOVA) model on community 
composition excluding community mixing treatments: disturbance 
level r2 = 0.42, P = 0.01, pairwise comparisons for streptomycin level 
all P < 0.04; Supplementary Table 2; community composition in the 
different treatments is visualized in Fig. 3 top rows and Extended Data 
Figs. 1–3). In the presence of streptomycin, most species decreased in 
abundance but some species with higher resistance level increased in 
abundance (Fig. 3c top row; Extended Data Figs. 3 and 4; linear model 
for relationship between intrinsic resistance level and change in fre-
quency in the absence of streptomycin pre-exposure or community 
mixing: coefficient of determination R2 ≈ 0.25 and P < 0.001 for both 
low and high streptomycin levels). These frequency changes approxi-
mate changes in absolute abundance owing to relatively constant 
community biomass levels in our experiment (Extended Data Figs. 5  
and 6). Consistent with resistant cells being favoured with strep-
tomycin, in the absence of dispersal, streptomycin level explained 
most of the variation (68.0%) in the IC50 values of eight clones iso-
lated at random from each experimental end-point community  
(Extended Data Fig. 7 and Supplementary Tables 3–6).

Streptomycin level also influenced community diversity. Higher 
Shannon diversity occurred at low streptomycin level compared to no 
streptomycin or high level (least diversity; Extended Data Fig. 8 and 
Supplementary Table 7). This was strongly influenced by the dominant 
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species Aeromonas whose population collapsed with streptomy-
cin. This increased evenness at low streptomycin level, while high 
streptomycin level expectedly decreased diversity by driving spe-
cies extinctions and competitive dominance of particular resistant 
species. This finding is consistent with the intermediate disturbance 
hypothesis positing that increasing disturbance levels initially increase 
diversity by reducing the abundance of competitively dominant spe-
cies32. Nevertheless, the effect only holds for the Aeromonas species, 
as its pre-exposure to streptomycin removes the effect (Extended 
Data Fig. 8). Similarly, the effect was removed when all species were 
pre-exposed to streptomycin, without Shannon diversity reduction 
even at high disturbance level. Species richness alone showed a grad-
ual drop at increasing streptomycin level with the extinction of sus-
ceptible species (Extended Data Fig. 9 and Supplementary Table 8). 
Similar to its effect on Shannon diversity, in the presence of strep-
tomycin, pre-exposure of all species in the community maintained  
species richness.

Pre-exposure decreased impact of disturbance on community
Although streptomycin drove most of the variation in community com-
position, pre-exposing community members to streptomycin itself also 
had a minor effect on composition (Extended Data Figs. 1, 2 and 10 and 
Supplementary Table 9). Since this study focuses on streptomycin as 
a model disturbance, pre-exposure was not treated as a disturbance. 
Instead, to control for the effect of pre-exposure, community data were 
examined relative to the streptomycin-free composition within each 
pre-exposure treatment.

Pre-exposure led to maintaining the abundance of more suscepti-
ble species that otherwise declined (Supplementary Fig. 1; analysis of 
variance (ANOVA) for linear model on frequency change of focal species 
in the absence of community mixing: streptomycin level F2,54 = 238.4, 
P < 0.001; absence/presence of pre-exposure F1,54 = 1,778, P < 0.001; 
species F2,54 = 1,195; all interactions P < 0.001; Supplementary Table 10). 
Without pre-exposure, the population of only one relatively suscepti-
ble species (Fig. 2a), Aeromonas, collapsed at low streptomycin level.  
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In turn, regardless of pre-exposure, the population of the intrinsically 
resistant species Citrobacter increased in the presence of streptomycin.

At the community level, pre-exposure of abundant susceptible 
species (Aeromonas and P. chlororaphis) caused a decrease in compo-
sitional change at high streptomycin level compared to the absence 
of pre-exposure (Fig. 4). This was caused by two factors. First, main-
taining abundance of the focal species itself decreased total commu-
nity change (Fig. 4a and Supplementary Fig. 2). Second, for three out 
of four replicate communities for the most abundant and relatively 

susceptible Aeromonas species, the non-focal community fraction 
was also protected from change (Fig. 4b; Tukeyʼs post hoc test for 
non-focal community: Aeromonas versus P. chlororaphis, P = 0.061; 
Aeromonas versus Citrobacter, P = 0.042; Supplementary Table 11). The 
same result was found for compositional (directional) change as for 
the magnitude of change, such that only for pre-exposed Aeromonas, 
composition in the non-focal community fraction was significantly 
altered compared to the absence of pre-exposure (PERMANOVA model 
on community composition in the control condition without mixing or 
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Acinetobacter lwo�ii HAMBI 97
Microvirga lotononidis  HAMBI 3237
Paraburkholderia caryophylli HAMBI 2159
Moraxella canis HAMBI 2792
Paracoccus denitrificans HAMBI 2443
Hafnia alvei HAMBI 1279
Paraburkholderia kururiensis HAMBI 2494
Kluyvera intermedia HAMBI 1299
Cupriavidus necator HAMBI 2164
Brevundimonas bullata HAMBI 262
Pseudomonas putida HAMBI 6
Chitinophaga sancti HAMBI 1988
Morganella morganii HAMBI 1292
Bordetella avium HAMBI 2160
Pseudomonas chlororaphis HAMBI 1977
Aeromonas caviae HAMBI 1972
Niabella yanshanensis HAMBI 3031
Comamonas testosteroni HAMBI 403
Agrobacterium tumefaciens HAMBI 105
Sphingobacterium spiritivorum HAMBI 1896
Citrobacter koseri HAMBI 1287
Sphingobium yanoikuyae HAMBI 1842
Stenotrophomonas maltophilia HAMBI 2659

Fig. 3 | Effect of disturbance, community mixing and pre-exposure of single 
most abundant community member (Aeromonas caviae HAMBI 1972) on 
community composition and disturbance resistance. a, Relative abundance 
of species at the end point of 46-day serial passage experiment (n = 4 replicates 
per unique treatment combination). Subcolumns show data for the three 
disturbance levels (no, low or high streptomycin or Sm, level; deepening shades 
of red) in two key pre-exposure treatments, separated by black vertical lines from 
left to right as follows: (1) ancestral populations used for all species (‘All anc.’); (2) 
a population used for the most abundant species in the undisturbed community, 
A. caviae HAMBI 1972, that had evolved to be highly resistant to the disturbance 
as a result of pre-exposure (‘Pre-exp. 1972’). A model bacterial community 
consisting of 23 Gram-negative species was used in the experiment. The three 
streptomycin disturbance patches (no, low or high level) mixed at low or high 
rate have a shared history and can be identified by the replicate number shown 
on the x axis. b, A t-SNE map showing de novo community clustering at the end 

point of serial passage experiment. All data points originate from the same t-SNE 
analysis and have been separated into panels (with same arbitrary axis units) to 
illustrate how experimental treatments influence compositional divergence. 
The t-SNE map is a two-dimensional projection of a manifold in high-dimensional 
space, and only the relationship between the points is meaningful, not point 
positioning, with the axes given in arbitrary units. c, Frequency of each species 
relative to the frequency of the same species in the pre-exposure history-specific 
control condition with no antibiotic or community mixing (upper left-hand 
white corner) at the end point of serial passage experiment. Data are presented as 
mean ± s.e.m. (n = 4 replicates for each treatment condition). The data points in 
the control condition (top row with white background) represent variation of  
the four control replicates around their mean (zero) and therefore deviate from 
zero. The species have been ordered by increasing streptomycin resistance level 
(IC50 value) of the ancestral species.
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streptomycin: Citrobacter pre-exposure r2 = 0.12, P = 0.40; Aeromonas  
pre-exposure r2 = 0.56, P = 0.02; P. chlororaphis pre-exposure r2 = 0.18, 
P = 0.30; Supplementary Table 2). This effect includes, for exam-
ple, better maintenance of Hafnia alvei and Kluyvera intermedia  
(Fig. 3c top right).

Since Aeromonas occupies up to 80% of the community without 
streptomycin, it is likely to strongly influence the resource environ-
ment. Its loss with streptomycin would represent a major additional 
disturbance, explaining why its maintenance with pre-exposure also 
protects certain other species from change. Consistent with this, 
at high streptomycin level without dispersal, the pre-exposure of  
Aeromonas led to the second lowest level of total community change 
after the pre-exposure of all community members (Supplementary 
Fig. 3; ANOVA for linear model on KL divergence of communities 
from pre-exposure treatment-specific baseline at experimental end 
point at high streptomycin level in the absence of community mixing: 
pre-exposure treatment F4,15 = 867, P < 0.001; Tukey’s post hoc test 
on all species pre-exposed versus other treatments and Aeromonas 
pre-exposed versus other treatments, all comparisons P < 0.001;  
Supplementary Table 12).

Dispersal spread patch features to metacommunity
As expected, dispersal spread patch features into the three-patch meta-
community (Fig. 3 and Extended Data Figs. 1–3). This caused interme-
diate species richness across the metacommunity when compared 
to the patches in the absence of dispersal, with Shannon diversity 
differences between the patches decreasing for most pre-exposure 
treatments from low to high dispersal rates (Extended Data Figs. 8  

and 9 and Supplementary Tables 7 and 8). Consistent with this, dispersal 
spread streptomycin-resistant cells across the metacommunity from 
the high-streptomycin patch, such that the level of variation in IC50 
values in clones isolated from the experimental end point explained 
by streptomycin in the individual patches decreased from 68.0% at 
no mixing through 26.6% at low mixing rate to 8.5% at high mixing 
rate (Extended Data Fig. 7 and Supplementary Tables 3–6). There-
fore, consistent with theory, dispersal decreased metacommunity 
(beta) diversity (Supplementary Fig. 3; ANOVA for linear model on KL 
divergence of communities from pre-exposure treatment-specific 
baseline: community mixing rate F2,135 = 44.7, P < 0.001; community 
mixing rate × streptomycin level F4,135 = 24.3, P < 0.001; community 
mixing rate × pre-exposure treatment F8,135 = 25.0, P < 0.001; Tukey’s 
honestly significant difference for pairwise comparisons on com-
munity mixing rate, no mixing versus low/high mixing rate P < 0.001;  
Supplementary Table 13).

To examine the effect of dispersal rate on resilience, we computed 
the mean composition of the communities across the three strepto-
mycin levels for each pre-exposure treatment. This represents a null 
scenario where the dispersal treatment composition is simply the aver-
age of the composition in the three patches. We then tested whether 
community composition in the low or high dispersal rate treatments 
differed from this null scenario. If the composition significantly dif-
fers from the average composition at a particular dispersal rate, the 
dispersal rate disproportionately favours the spread of particular patch 
effects across the metacommunity rather than evenly homogenizing 
composition across the patches. In the absence of pre-exposure, the 
low dispersal rate corresponded to the null scenario whereas the high 
dispersal rate differed significantly from the null model and low dis-
persal rate (PERMANOVA model for all ancestral community: dispersal 
rate r2 = 0.63, P = 0.01; pairwise comparisons: null model versus low 
P = 0.228, null versus high P = 0.003, low versus high P = 0.003; Sup-
plementary Table 2). This corresponded to a high magnitude of change 
from the streptomycin- and dispersal-free baseline community at high 
dispersal rate, representing decreased resilience at high compared to 
low mixing rate (Fig. 5a left; ANOVA for linear model on KL divergence 
of communities from the streptomycin- and dispersal-free condition: 
dispersal rate F1,44 = 78.2, P < 0.001; Supplementary Table 14). When 
comparing against the other dispersal-free patches, the dispersal rate 
leads all patches closer to the high streptomycin scenario (Fig. 3b, left). 
This also applied to some individual replicates within the low dispersal 
rate communities, seen as heightened variance between replicates 
with low dispersal rate, suggesting that the low dispersal rate used 
in this study was close to a community tipping point (Fig. 5b; ANOVA 
for linear model on effect of streptomycin disturbance and dispersal 
on variance between replicate communities: dispersal rate F2,36 = 6.1, 
P = 0.005; Tukeyʼs post hoc test for low versus no/high dispersal rate 
both P = 0.02, no versus high P = 1.0; Supplementary Table 15).

Pre-exposure removed dispersal–resilience relationship
Protection of the community through pre-exposure removed the 
negative association between dispersal rate and resilience (results 
shown for Aeromonas in Fig. 5a and Supplementary Fig. 3). For the 
pre-exposure of the dominant Aeromonas caviae species or all spe-
cies, this was seen as only minor community change at low dispersal 
rate compared to the baseline (Supplementary Fig. 3) as well as lack 
of compositional difference between the low and high dispersal rate 
treatments (PERMANOVA model for Aeromonas: dispersal rate r2 = 0.31, 
P = 0.01; pairwise comparisons: null model versus low P = 0.009, null 
versus high P = 0.003, low versus high P = 0.249; PERMANOVA model for 
all pre-exposed: dispersal rate r2 = 0.23, P = 0.02; pairwise comparisons: 
null model versus low P = 0.192, null versus high P = 0.033, low versus 
high P = 0.194; Supplementary Table 2). Therefore, pre-exposure of 
Aeromonas or all species avoided spread of the streptomycin scenario 
across the metacommunity at high dispersal rate (for Aeromonas, see 
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Fig. 4 | Effect of streptomycin pre-exposure on community resilience.  
The y axis shows community resilience quantified as KL divergence of community 
composition from the streptomycin-free condition relative to the pre-exposure-
free environment. Therefore, the lower the value, the less community change 
occurs at high streptomycin level and the more resilient the community is.  
a, Resilience of the entire community at high streptomycin level. b, Resilience 
of the non-focal community fraction at high streptomycin level (that is, the 
pre-exposed species has been removed). Pre-exposed species have been 
ordered from left to right by increasing abundance in the control condition 
(antibiotic and pre-exposure-free environment), with the exception of placing 
the ‘all pre-exposed’ treatment in front of the list in a (absent from b as all 
community members have been pre-exposed). For both a and b, box plot bars 
and circles indicate medians and data points, respectively. The boxes indicate the 
interquartile range (25–75th percentile) and whiskers indicate lower and upper 
quartiles minus or plus 1.5 times the interquartile range.
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Fig. 3b, right). For pre-exposed Citrobacter and P. chlororaphis, where 
some community change occurred at low mixing rate (Supplementary 
Fig. 3), this was seen as smaller compositional change from the baseline 
at high compared to low dispersal rate (Supplementary Fig. 3), with low 
dispersal rate composition being closer to the equal mixing ratio null 
model (PERMANOVA model for Citrobacter: community mixing rate 
r2 = 0.31, P = 0.01; pairwise comparisons: null model versus low P = 1.00, 
null versus high P = 0.006, low versus high P = 0.030; PERMANOVA 
model for P. chlororaphis: community mixing rate r2 = 0.34, P = 0.02; 
pairwise comparisons: null model versus low P = 1.00, null versus high 
P = 0.009, low versus high P = 0.030; Supplementary Table 2). There-
fore, pre-exposure of abundant species can strongly influence the 
relationship between dispersal and resilience.

Discussion
Here we tested how pre-exposure to disturbance and dispersal influence 
disturbance response in 23-species metacommunities. As predicted, 
pre-exposure caused trait evolution (Fig. 2), decreasing the effect of 
the disturbance on the disturbed communities9 (Fig. 4) and thereby 
also on the metacommunity (Fig. 5a). Moreover, as expect, dispersal 
homogenized species composition and traits across the metacommu-
nity, reducing beta diversity compared to lack of dispersal (Fig. 3a)14,18,21. 
Since the different patches experienced different levels of disturbance, 

this resulted in decreased diversity in the undisturbed patch and 
increased diversity in the high-disturbance patch (Extended Data 
Figs. 8 and 9 and Supplementary Tables 7 and 8)16,22–24. In the absence 
of pre-exposure, higher dispersal rates facilitated spread of disturbance 
effects, decreasing metacommunity resilience (compare ref. 21.) but 
this was cancelled by pre-exposure of abundant community members 
(Fig. 5a). These results show that the dispersal–resilience relationship 
depends on dispersal rate, and that the relationship is critically altered 
by pre-exposure of important community members.

There are several limitations in the current study that warrant 
future investigation. First, the mechanism underlying the negative 
relationship between dispersal rate and community resilience is uncer-
tain. It could, for instance, be caused by decreased recovery time for 
the undisturbed patch between dispersal events at high dispersal rate. 
As we only collected end-point data, future studies including sam-
pling over time are needed to test this hypothesis. Second, we found 
that pre-exposure of the dominant Aeromonas species to disturbance 
altered the abundance of the other community members, protect-
ing the community from change with disturbance, but the reason 
for this should be addressed by future studies. A focal species could 
alter community-wide species composition through competition for 
shared resources, altering the resource landscape for the other species 
or through species interactions such as producing useful or harmful 
metabolites33–35. Stress conditions may also change the nature of spe-
cies interactions15,36–38.

Third, our decision to choose focal species for the pre-exposure 
treatments based on their abundance could have led to the oversight 
of important species. Although in our setup changes in the single 
dominant Aeromonas species explained most of the variance in 
all experimental outcomes, it has generally been established that 
low-abundance species can also be critical for community functioning, 
such as cross-feeding networks39. Therefore, in the future, composi-
tional data should be complemented by functional data (for example, 
transcriptomic or metabolomic) to inspect how species loss and evo-
lutionary change alters metabolic pathways.

Fourth, in our study setup, dispersal was modelled by mixing 
entire communities. The high magnitude of dispersal is likely to have 
influenced the study results. For instance, very low dispersal rates 
may lead to species-poor communities with vacant niches20,40, which 
was probably averted in the low dispersal rate treatment in this study 
owing to mixing entire communities. Future studies varying both 
the magnitude and rate of dispersal are required to better elucidate 
these dynamics. An advantage of mixing entire communities is that 
our results may have implications for extending existing community 
coalescence theory19,41,42 to a dynamic temporal setting.

Fifth, we observed a strong capacity of pre-exposure, particularly 
for the most abundant and stress-susceptible community members, 
to decrease the effect of the disturbance, also cancelling the spread of 
disturbance across the metacommunity at high dispersal rate (Fig. 5a). 
This demonstrates the potential of rapid evolution to improve ecologi-
cal resilience, including in a metacommunity setting. Notably, how-
ever, we designed our experimental setup to quantify the maximum 
potential of rapid evolution by pre-exposing the species to be highly 
stress resistant. Moreover, we pre-exposed the species by exposing 
them to increasing levels of stress. The capacity for rapidly evolvable 
species to evolve de novo stress resistance is likely to be constrained 
during sudden exposure to high-level disturbance and when nested in 
a multispecies community13. In a multispecies community, susceptible 
species can rapidly become outcompeted by intrinsically resistant 
species and have lower population sizes (potentially decreasing evolv-
ability) compared to when cultured alone, and a community context 
has been shown to constrain adaptation43.

One reason for our setup, maximizing the impact of rapid evo-
lution through pre-exposure to a high streptomycin concentration 
without a community context, was that we had previously failed to 
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Fig. 5 | Effect of community mixing rate and disturbance pre-exposure on 
resilience across metacommunities. a, KL divergence from the streptomycin- 
and mixing-free environment at low and high community mixing rate for 
communities containing only ancestral species (left) and communities where the 
most dominant community member A. caviae HAMBI 1972 had been pre-exposed 
to streptomycin (right). Metacommunity refers to the three disturbance level 
patches (no, low or high streptomycin level) subject to community mixing. The 
12 points overlaid above each box plot include the four replicates from each of 
the three streptomycin patches (streptomycin-free, low level and high level) 
comprising metacommunities. Each point indicates the compositional distance 
(KL divergence on y axis) of an individual community within the metacommunity 
from the streptomycin- and mixing-free (that is, no metacommunity) control 
condition (mean of four replicates) at the experimental end point. b, Variance 
in KL divergence between replicate communities in each treatment at different 
community mixing rates (n = 180 communities per four replicates = 45 replicate 
sets). The 45 points overlaid above each box plot show variation among the four 
replicate communities in identical conditions (one of three streptomycin levels 
and one of five pre-exposure treatments) for each of the three community mixing 
rates. The y axis shows variance in KL divergence quantified as in a, indicating 
the level of variation among replicates in community change from the baseline 
(no streptomycin or community mixing) as a function of community mixing 
rate. For both a and b, box plot bars and circles indicate medians and data points, 
respectively. The boxes indicate the interquartile range (25–75th percentile) 
and whiskers indicate lower and upper quartiles minus or plus 1.5 times the 
interquartile range.
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observe a clear effect of rapid evolution on community dynamics when 
communities consisting of initially unevolved species were exposed 
to antibiotic pulses16. Similar to that study, de novo evolution of strep-
tomycin resistance is also likely to have occurred in multiple species 
during our study, although we lack the phenotypic and genomic data 
to test this explicitly. Owing to these previous findings from the same 
community exposed to the same antibiotic for a similar duration, we 
consider it unlikely that de novo evolution would be important for the 
dynamics in this system. Nevertheless, we did find some signals poten-
tially indicating a minor influence of de novo evolution on community 
dynamics. For instance, in individual replicate communities, certain 
species with low IC50 values (Hafnia, Kluyvera and Paraburkholderia) 
increased in frequency at high streptomycin level (Fig. 3c, top row). 
Moreover, in one non-pre-exposed replicate community (D, low mixing 
rate; Fig. 3c, middle left), the population of the relatively susceptible 
species Aeromonas did not collapse as in all other communities lacking 
its pre-exposure. These cases may indicate the influence of de novo 
resistance evolution causing evolutionary rescue of these species in 
individual communities. The relatively brief time frame of these stud-
ies is a limitation, since there is limited time for rare de novo resistance 
mutations occurring at different times in the experiment to increase 
to high allele frequency and exert community-wide impacts. This 
may explain why initial species characteristics seems to drive these 
systems, and future studies with longer time frames may show greater 
community consequences of de novo evolution.

Our findings are relevant for designing successful control inter-
ventions to improve ecological resilience in natural communities. 
When there is absence of pre-exposure or low potential for rapid 
evolutionary change, low levels of dispersal between disturbed and 
undisturbed patches may facilitate metacommunity resilience. Our 
previous study suggests that one-way immigration from an undis-
turbed patch (source) to a disturbed patch is ideal for resilience, but 
this may not always be achievable16. However, our findings in this study 
suggest that, with high levels of dispersal, there is a risk of spreading 
eco-evolutionary effects of disturbances across metacommunities (see 
also ref. 21). Nevertheless, when there is high potential for evolutionary 
change in response to the disturbance or if pre-exposed populations of 
abundant taxa are introduced into a community, rapid trait evolution 
can be harnessed to protect from the disturbance at both local (patch) 
and global (metacommunity) levels.

Exploiting these features of rapid evolution and dispersal could 
be an effective tool for promoting compositional resilience in spe-
cies communities facing environmental change. Nevertheless, this 
approach is also accompanied by risks. Reduced within-species diver-
sity16 or pleiotropic effects of resistance mutations44,45 in an evolved 
species may cause community-wide changes in composition (as 
observed here) and function or affect the viability and resilience of 
the evolved species. Exploiting evolution and connectivity may still 
be considered worthwhile, as it is increasingly acknowledged that 
control interventions to steer ecology and evolution virtually always 
carry associated costs due to the complexity of biological systems4,9. An 
optimal control strategy for a given eco-evolutionary system, including 
one seeking to improve resilience, is one that strikes a balance between 
the importance of achieving a particular target and the importance of 
minimizing associated costs.

Methods
Synthetic bacterial community and experimental evolution
All experiments used synthetic assemblages of 23 different soil-, water- 
and host-associated bacterial species (Supplementary Table 16). Before 
the main experiment, all 23 species were experimentally evolved in 
two steps to have a maximum range of potential phenotypic and 
genotypic diversity derived from streptomycin exposure, thereby 
mimicking natural communities containing a legacy of past distur-
bance exposure within genetically heterogeneous populations. In the 

first high-resistance generation step, monocultures of each species 
were grown in sub-minimal inhibitory concentrations (sub-MICs) of 
streptomycin (MICs from ref. 25) in protease peptone yeast extract 
(PPY) medium for 24–72 h at 28 °C. Monocultures were then serially 
transferred (96-deep-well plates; 1,500 µl of PPY; 3% transfer volume, 
48 h transfer interval; 28 °C, shaking at 1,000 rpm) with streptomy-
cin concentrations doubling every transfer. The transfer series was 
stopped when bacterial optical density (OD) fell below 0.1 OD units 
(Supplementary Table 16) and 1 ml of the previous culture was frozen 
in 30% glycerol. In the second diversity generation step, evolved popu-
lations and ancestral forms of each species were revived from −80 °C 
and precultured (6 ml of Reasoner’s 2A medium, R2A; 28 °C; shaking at 
50 rpm; 96 h in total), then mixed in an equal ratio and grown for 48 h 
in duplicate (96-deep-well plates; 1,500 µl of PPY; 3% transfer volume; 
28 °C; shaking at 1,000 rpm) at 12 different streptomycin concentra-
tions (0, 1, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000 and 5,000 µg ml−1). 
After this round of growth, 100 µl from each streptomycin concentra-
tion was combined per species. Each evolved population was frozen in 
40% glycerol for later experimental use.

Serial passage experiment and measurements
The main experiment was initiated with bacterial mixtures manually 
assembled into five pre-exposure histories: only ancestral forms of the 
23 species (‘all ancestral’), 22 ancestral species plus one experimentally 
pre-exposed population from one of three abundant species (Citrobac-
ter koseri HAMBI 1287, A. caviae HAMBI 1972 or P. chlororaphis HAMBI 
1977) and experimentally pre-exposed populations of all 23 species 
(‘all pre-exposed’). These bacterial mixtures were assembled by first 
reviving the ancestral form and the pre-exposed population of each 
species from −80 °C and preculturing them for 24 h in R2A (6 ml; 25 °C; 
50 rpm). One millilitre from each preculture was combined into one 
of the five pre-exposure treatments above, briefly mixed by vortex-
ing, and then divided into four parts. These four parts were then used 
as the four replicate inoculae per evolutionary history for the main 
experiment. The initial species compositions differed slightly between 
the pre-exposure treatments (Supplementary Fig. 4). Notably, the 
species Brevundimonas bullata HAMBI 262 and Chitinophaga sancti 
HAMBI 1988 were not present at detectable levels in the community 
stock used to initiate the all pre-exposed treatment. Among these 
species, B. bullata HAMBI 262 was detected in the all pre-exposed treat-
ment at the experimental end point (Extended Data Fig. 1). C. sancti 
HAMBI 1988 was present in the other treatments at very low levels at 
the experimental end point, suggesting that its absence from the all 
pre-exposed treatments is unlikely to have influenced the findings in 
the study. Originally, the pre-exposure treatment also included the 
species Pseudomonas putida HAMBI 6, Agrobacterium tumefaciens 
HAMBI 105 and Sphingobacterium spiritivorum HAMBI 1896. However, 
whole-genome sequence analysis of the pre-exposed populations of 
these species used to initiate the serial passage experiment showed 
them to be contaminated with other pre-exposed species. They were 
therefore omitted from the analysis.

Next, three different streptomycin concentrations (0, 20 or 
1,000 µg ml−1) representing three levels of disturbance were applied 
to each replicate per evolutionary history. Finally, a community mixing 
treatment was nested within replicates of each evolutionary history 
to simulate differing amounts of connectivity between streptomycin 
‘patches’. In the no-mixing treatment, each streptomycin patch was 
serially transferred to the same streptomycin patch. In the low mixing 
rate treatment, the three streptomycin patches were thoroughly mixed 
every 12 days (six transfers), and this mixture was used to inoculate 
all streptomycin patches in the next transfer. The high mixing rate 
treatment was the same as the low mixing rate treatment, but mixing 
occurred every 6 days (three transfers). The mixing treatment con-
sisted of mixing equal volumes of all three streptomycin levels (0, 20 
and 100 µg ml−1), resulting in a concentration in the mix of 353 µg ml−1. 
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The protocol leads to a maximum streptomycin concentration of 
~10 µg ml−1 (assuming no degradation of streptomycin during previ-
ous culture cycle) after the first transfer following mixing, and negli-
gible amounts thereafter before the next mixing event (for example, 
0.3 µg ml−1 after second transfer). Such a residual streptomycin level 
may have imposed some selection in the streptomycin-free patch in 
the first culture cycle after community mixing, as it exceeds the IC50 
value of three low-abundance species in the community (Acinetobacter 
lwoffii HAMBI 97, Microvirga lotononidis HAMBI 3237 and Paraburk-
holderia caryophylli HAMBI 2159; Fig. 2a). However, this residual level 
should not affect the competitive dynamics of the two dominant spe-
cies C. koseri HAMBI 1287 (high-resistance) and A. caviae HAMBI 1972 
(more susceptible), as the growth of the latter is not impaired until 
concentrations >16 µg ml−1 (Supplementary Fig. 5). Therefore, in the 
community mixing treatment, the dominance of either strain should 
be driven purely by density-dependent effects based on the intrinsic 
or evolved traits of the strains (growth and resistance) in the different 
streptomycin patches.

Experimental microcosms were maintained for 23 serial transfers 
(96-deep-well plates; 1,500 µl of R2A; 3% transfer volume; 48 h transfer 
interval; 25 °C, shaking at 1,000 rpm) in the appropriate streptomycin 
concentration. For the low and high mixing rate treatments, 780 µl 
from the three streptomycin concentrations were pooled, vortexed 
and used as the next inoculum in the series. Optical density (600 nm) 
was measured every 48 h (Extended Data Fig. 5). After the 23rd transfer, 
an aliquot was cryopreserved (40% glycerol) to be revived later for the 
dose–response analysis (see below). The remainder of each sample 
was destructively harvested to collect material for DNA extraction and 
amplicon sequencing.

Sequencing and bioinformatics
Bulk DNA was extracted from a 500 µl aliquot of experimental samples 
(cryopreserved in 40% glycerol) using the DNeasy 96 Blood & Tissue 
Kit (Qiagen) according to the manufacturer’s instructions. The V3–V4 
hypervariable region of the 16S ribosomal RNA gene was amplified from 
total community DNA following the standard Illumina 16S metagen-
omic sequencing library preparation protocol (Illumina). Briefly, 
the protocol uses the primer pair PCR1_Forward (50 base pairs (bp)): 
5′–TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNG-
GCWGCAG–3′, PCR1_Reverse (55 bp): 5′–GTCTCGTGGGCTCGGAGA-
TGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC–3′ in a limited- 
cycle polymerase chain (PCR) reaction, then attaches Nextera XT bar-
codes using a dual-index arrangement. The libraries were then pooled 
and sequenced on an Illumina MiSeq using paired 300 bp reads and 
MiSeq v.3 reagents at the Finnish Institute of Molecular Medicine. 
Library indices were subsequently demultiplexed using bcl2fastq 
v.2.2. Paired-end 16S rRNA amplicon reads were then quality trimmed, 
merged, filtered and mapped to a reference of the 16S rRNA gene 
from the 23 species as previously described46. Before data analysis,  
species counts were normalized by species-specific 16S rRNA gene 
copy number.

Genomic DNA from ancestral forms and one replicate of the 
evolved populations was extracted using the DNeasy 96 Blood & Tis-
sue Kit (Qiagen) from 24 h overnight cultures grown in PPY medium. 
Sequencing of genomic DNA was performed at SeqCenter (https://
www.seqcenter.com/). Sample libraries were prepared using the 
Illumina DNA Prep kit and IDT 10 bp UDI indices and sequenced on 
an Illumina NextSeq 2000, producing 2 × 151 bp reads. Demultiplex-
ing, quality control and adaptor trimming were performed with bcl- 
convert (v.3.9.3).

To ensure that the pre-exposed starting populations were axenic, 
reads were competitively mapped against a set of closed reference 
genomes using bbsplit (https://sourceforge.net/projects/bbmap/). 
This tool simultaneously maps reads against several reference 
genomes and identifies the best-matching genome for each read pair.  

We excluded all read pairs mapping ambiguously to more than one 
reference genome (that is, multiple mapping positions within a con-
tainment threshold of the top-scoring mapping position) but kept 
reads that mapped ambiguously within a single genome. Starting 
populations with significant contamination from other species were 
discarded from further analysis. The purity of the starting populations 
was then verified via PCR of the 16S rRNA gene (primers 27 F and 1492 R) 
and Sanger sequencing, to ensure that only one template was present 
in the sequencing reaction. Sanger sequencing traces of all replicates 
of C. koseri 1287, A. caviae 1972 and P. chlororaphis 1977 did not have 
multiple peaks at any position, confirming the taxonomic purity from 
competitive read mapping.

The competitive mapping process generated a set of read pairs 
unique to the expected species from each experimentally evolved 
population. Evolved species with <25× coverage of the target genome 
(HAMBI 97, 105, 262, 1988 and 3237; Supplementary Table 16) were 
excluded from downstream analysis. Taxonomically verified read 
pairs were mapped to closed reference genomes for each species47 
using BWA-mem v.0.7.17 (ref. 48). Alignment files were preprocessed 
with GATK v.4.4 following best practices49. Mutect2 from GATK v.4.4 
(ref. 50) was used to call genomic variants using default parameters, 
and mutect calls were filtered to exclude spurious calls using Filter-
MutectCalls with the --microbial-mode option. Filtered variants were 
annotated using SnpEff v.4.3 (ref. 51). Gene calls were from Prokka 
v.1.14.6 (ref. 52). Functional annotations of genes were derived from 
the Prokka internal database and the eggNOG 6.0 database53 using 
eggNOG-mapper v.2.1.10 (ref. 53).

Inference of IC50 values
Using a dose–response curve analysis, half-maximal inhibitory 
streptomycin concentrations (IC50) were estimated for the ances-
tral forms of each bacterial species, the pre-exposed populations 
of the three abundant species used in the pre-exposure treatment  
(C. koseri HAMBI 1287, A. caviae HAMBI 1972 and P. chlororaphis  
HAMBI 1977) and for clones randomly picked from the final time point 
in the experiment. Clones of ancestral/evolved forms of each species 
and from the experiment end point (day 46) were picked from agar 
plates and precultured for 24 h in PPY medium, then inoculated at a 
density of 0.01 OD600 into 200 µl of R2A medium at streptomycin con-
centrations of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024, 2,048, 4,096 
and 8,192 µg ml−1. Cultures were grown for 48 h at 25 °C in 96-well 
plates with shaking (1,000 rpm) and culture density was assessed 
at 48 h using OD600. For the strains used to initate the experiment, 
four replicate dose–response experiments were performed for each 
ancestral species (four clones per species) and 64 for each population 
of the three pre-exposed species. For the experimental end-point 
communities, eight clones were isolated and tested from each of the 
180 communities (1,440 clones in total).

Dose–response curves were fit to the resulting blank-corrected 
optical density data from each species or clone following ref. 54 but 
using a four-parameter log-logistic function of the form

f (x) = c + d − c
1 + exp(b(log (x) − log(e)))

where c is the lower asymptote, d is the upper asymptote, b is the slope 
at the inflection point and e is the IC50 value or the antibiotic concentra-
tion where the growth (optical density) is at half the maximum value. 
The log-logistic function was fit to the optical density measurements 
using the Levenberg–Marquardt nonlinear least-squares algorithm 
implemented in minpack.lm v.1.2-4 in R v.4.2.2. IC50 values were set to 
the maximum tested streptomycin concentration when optical density 
was always >0.2 OD600 units and did not decrease across the assayed 
streptomycin concentration range in a sigmoid shape with a clearly 
defined upper and lower asymptote.
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Downstream data analyses
All downstream analyses were performed in the R v.4.2.3 environment55. 
The t-distributed stochastic neighbour embedding (t-SNE) map for 
Fig. 3b and Extended Data Fig. 2 was created using the Rtsne pack-
age56 with the options perplexity = 20 and theta = 0.5. PERMANOVA57 
as implemented in the adonis function in the vegan package58 was 
used to test whether the antibiotic level, community mixing rate 
or pre-exposure treatment affected community composition. The 
method tests the probability that the observed distances between 
groups could arise by chance by comparing them with random per-
mutations of the raw data59. The influence of the experimental treat-
ments on IC50 and KL divergence values relative to the pre-exposure 
history-specific baseline (streptomycin- and mixing-free condition) 
was investigated using linear regression models.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequence data (fastq files) have been deposited in the NCBI 
Sequence Read Archive under the accession PRJNA1126612. Pre-
processed data on the growth of pre-exposed species at different 
streptomycin concentrations, genomic variants of pre-exposed 
species, community size in the main experiment and community 
composition in the main experiment are available via Zenodo at  
https://doi.org/10.5281/zenodo.14015860.60 (ref. 60).

Code availability
All code needed to reproduce the downstream analyses and figures 
are available via Zenodo at https://doi.org/10.5281/zenodo.14015860 
(ref. 60).
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Moraxella canis HAMBI 2792
Paracoccus denitrificans HAMBI 2443
Hafnia alvei  HAMBI 1279
Paraburkholderia kururiensis HAMBI 2494
Kluyvera intermedia HAMBI 1299
Cupriavidus necator HAMBI 2164
Brevundimonas bullata HAMBI 262
Pseudomonas putida HAMBI 6
Chitinophaga sancti  HAMBI 1988
Morganella morganii  HAMBI 1292
Bordetella avium HAMBI 2160
Pseudomonas chlororaphis HAMBI 1977
Aeromonas caviae HAMBI 1972
Niabella yanshanensis HAMBI 3031
Comamonas testosteroni  HAMBI 403
Agrobacterium tumefaciens HAMBI 105
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Citrobacter koseri  HAMBI 1287
Sphingobium yanoikuyae HAMBI 1842
Stenotrophomonas maltophilia HAMBI 2659

Extended Data Fig. 1 | Effect of disturbance, community mixing and pre-
exposure on community composition. Relative abundance of species 
(normalized by species-specific 16S rRNA gene copy number) at the end-point 
of 46-day serial passage experiment (N = 4 replicates per unique treatment 
combination). Subcolumns show data for the five pre-exposure treatments from 
left to right as follows: (1) ancestral strains used for all species (‘All anc.’); (2–4) a 
population used for one of three abundant species that had been pre-exposed 
to the disturbance (‘Pre-exp.’; HAMBI Culture Collection code indicated in 
column label: Citrobacter koseri HAMBI 1287, Aeromonas caviae HAMBI 1972, 

and Pseudomonas chlororaphis HAMBI 1977); and (5) pre-exposed populations 
used for all species. Within each pre-exposure treatment, the three streptomycin 
(Sm) disturbance patches (no, low, or high level) mixed at low or high rate (rows) 
have a shared history and can be identified by the replicate number shown on the 
x-axis. For instance, replicates D for each streptomycin level at low mixing rate 
in the first evolutionary treatment (‘All ancestral’; three middle rows on the left) 
represent three patches that were mixed regularly and therefore resemble each 
other more than the other replicates in the same antibiotic level.
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Extended Data Fig. 2 | A t-SNE map showing de novo community clustering at 
the end-point of serial propagation experiment. The experiment consisted of 
three patches exposed to no or two increasing levels of the model disturbance 
streptomycin (‘Sm’; colors), exposed to no or two increasing levels of community 
mixing (rows), as well as configured into five different pre-exposure treatments 
(columns), with four replicate communities (shapes) for each unique treatment 
combination (N = 3 × 3 × 5 × 4 = 180 populations). The pre-exposure treatments 
consisted of no pre-exposure for any of the 23 species in the community  

(‘All anc.’), a pre-exposed (‘Pre-exp.’) population for one of three abundant 
species (Citrobacter koseri HAMBI 1287, Aeromonas caviae HAMBI 1972, and 
Pseudomonas chlororaphis HAMBI 1977), and a community with pre-exposed 
populations of all community members. All data points originate from the same 
t-SNE analysis and have been separated into panels (with same arbitrary axis 
units) only for the sake of visual clarity of the effects of experimental treatments 
on compositional divergence between communities.
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Acinetobacter lwoffii  HAMBI 97
Microvirga lotononidis HAMBI 3237
Paraburkholderia caryophylli  HAMBI 2159
Moraxella canis HAMBI 2792
Paracoccus denitrificans HAMBI 2443
Hafnia alvei  HAMBI 1279
Paraburkholderia kururiensis HAMBI 2494
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Cupriavidus necator HAMBI 2164
Brevundimonas bullata HAMBI 262
Pseudomonas putida HAMBI 6
Chitinophaga sancti  HAMBI 1988
Morganella morganii  HAMBI 1292
Bordetella avium HAMBI 2160
Pseudomonas chlororaphis HAMBI 1977
Aeromonas caviae HAMBI 1972
Niabella yanshanensis HAMBI 3031
Comamonas testosteroni  HAMBI 403
Agrobacterium tumefaciens HAMBI 105
Sphingobacterium spiritivorum HAMBI 1896
Citrobacter koseri  HAMBI 1287
Sphingobium yanoikuyae HAMBI 1842
Stenotrophomonas maltophilia HAMBI 2659

Extended Data Fig. 3 | Effect of disturbance, community mixing and pre-
exposure on community composition. Frequency of each species relative 
to the frequency of the same species in the pre-exposure treatment specific 
control condition with no streptomycin (‘Sm’) or community mixing (that is, top 
panel) at the end-point of 46-day serial passage experiment (mean with s.e.m. 
for 4 replicates for each unique treatment combination). The data points in the 
control condition (top row) represent variation of the four control replicates 
around their mean (zero) and therefore deviate from zero. Columns show data 

for the five pre-exposure treatments from left to right as follows: (1) ancestral 
populations used for all species (‘All anc.’); (2–4) a population used for one of 
three abundant species that had been pre-exposed (‘Pre-exp.’) to the disturbance 
(HAMBI Culture Collection code indicated in column label: Citrobacter koseri 
HAMBI 1287, Aeromonas caviae HAMBI 1972, and Pseudomonas chlororaphis 
HAMBI 1977); and (5) pre-exposed populations used for all species. Rows show 
data for the three streptomycin disturbance conditions (no, low, and high level) 
nested within each of three community mixing rates (no, low, or high rate).
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Extended Data Fig. 4 | Relationship between intrinsic streptomycin level and 
frequency change of 23 species in model community at different streptomycin 
levels in the absence of community mixing or streptomycin pre-exposure  
(N = 23 species in 4 replicate communities for each streptomycin level).  

The coefficient of determination (R2) and P-value of linear regression fits to 
data for both streptomycin levels are indicated within the subplots. Data are 
presented as mean values +/- SEM.
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Extended Data Fig. 5 | Community biomass (optical density, OD, at 600 nm 
wavelength) for each individual population (N = 180) over time during 46-day 
serial propagation community experiment. Grey bars indicate missing data 
owing to technical failure. The columns show the three community mixing 
and streptomycin (model disturbance) treatments, and the rows show the five 

pre-exposure treatments. The codes in the pre-exposed treatments refer to the 
University of Helsinki HAMBI culture collection codes of the following species: 
Citrobacter koseri HAMBI 1287, Aeromonas caviae HAMBI 1972, and Pseudomonas 
chlororaphis HAMBI 1977. The x-axis indicates time in days, and the y-axis 
indicates the experimental replicate in question.
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Extended Data Fig. 6 | Relationship between relative and absolute species 
abundance. The y-axis shows the relative abundance of each of the 23 model 
community species at the experimental end-point (N = 180 communities × 23 
species). The x-axis shows the absolute abundance of the species, such that the 
relative abundance has been multiplied by the community biomass quantified as 

the mean optical density (OD) value at 600 nm wavelength of the five final time 
points in the experiment (see Extended Data Fig. 5 above). The coefficient of 
determination (R2) and P-value of a linear regression fit to the data are indicated 
within the figure.
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Extended Data Fig. 7 | Effect of disturbance, community mixing and pre-
exposure on disturbance resistance. Half maximal inhibitory concentrations 
(IC50) for the model disturbance streptomycin are indicated for eight clones 
isolated from each population at the experimental end-point (mean with 
bootstrapped 95 % confidence intervals). The data is considered to represent 
the IC50 values of dominant community members as the species identity of the 
clones was not determined. The pre-exposure treatments (columns) consisted 

of no pre-exposure for any of the 23 species in the community (‘All ancestral’), 
a pre-exposed population for one of three abundant species (Citrobacter koseri 
HAMBI 1287, Aeromonas caviae HAMBI 1972, and Pseudomonas chlororaphis 
HAMBI 1977), and a community with pre-exposed populations of all community 
members. Within each pre-exposure treatment, the three antibiotic disturbance 
patches mixed at low or high rate (rows) have a shared history and can be 
identified by the replicate letter code in the x-axis.
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Extended Data Fig. 8 | Shannon diversity of communities at end-point of serial 
propagation experiment (N = 180). The data is depicted as Shannon diversity for 
three patches with different disturbance regimes (no, low or high streptomycin 
level) at no, low or high rate of community mixing (rows) between the three 
patches (N = 4 replicates per unique treatment combination). Columns show data 
for the five pre-exposure treatments as follows: (1) ancestral strains used for all 
species; (2–4) a population used for one of three abundant species that had been 
pre-exposed to the disturbance (HAMBI Culture Collection code indicated in 
column label: Citrobacter koseri HAMBI 1287, Aeromonas caviae HAMBI 1972, and 

Pseudomonas chlororaphis HAMBI 1977); and (5) pre-exposed populations used 
for all species in the community. A model bacterial community consisting of  
23 gram-negative species was employed. Box plot bars and shapes indicate 
medians and data points, respectively. The boxes indicate the interquartile range 
(25–75th percentile) and whiskers indicate lower and upper quartiles minus or 
plus 1.5 times the interquartile range. Within each pre-exposure treatment, the 
three antibiotic perturbation patches mixed at low or high rate have a shared 
history and can be identified by the replicate number indicated by shape.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02624-0

All ancestral Pre−exposed 1287 Pre−exposed 1972 Pre−exposed 1977 All pre−exposed

N
o com

m
unity m

ixing
Low

 m
ixing rate

H
igh m

ixing rate

5

10

15

20

5

10

15

20

5

10

15

20

Sp
ec

ie
s 

ric
hn

es
s

Streptomycin level
No streptomycin
Low streptomycin level
High streptomycin level

Replicate community
A
B
C
D

Extended Data Fig. 9 | Species richness of communities at end-point of serial 
propagation experiment (N = 180). The data is depicted as species richness for 
three patches with different disturbance regimes (no, low or high streptomycin 
level) at no, low or high rate of community mixing (rows) between the three 
patches (N = 4 replicates per unique treatment combination). Columns show data 
for the five pre-exposure treatments as follows: (1) ancestral strains used for all 
species; (2–4) a population used for one of three abundant species that had been 
pre-exposed to the disturbance (HAMBI Culture Collection code indicated in 
column label: Citrobacter koseri HAMBI 1287, Aeromonas caviae HAMBI 1972, and 

Pseudomonas chlororaphis HAMBI 1977); and (5) pre-exposed populations used 
for all species in the community. A model bacterial community consisting of  
23 gram-negative species was employed. Box plot bars and shapes indicate 
medians and data points, respectively. The boxes indicate the interquartile range 
(25–75th percentile) and whiskers indicate lower and upper quartiles minus or 
plus 1.5 times the interquartile range.Within each pre-exposure treatment, the 
three antibiotic perturbation patches mixed at low or high rate have a shared 
history and can be identified by the replicate number indicated by shape.
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Extended Data Fig. 10 | A t-SNE map showing de novo community clustering 
at the end-point of serial propagation experiment among the different pre-
exposure treatments in the absence of streptomycin or community mixing 
(N = 5 pre-exposure treatments × 4 replicate communities = 20 communities). 

The pre-exposure treatments consisted of no pre-exposure for any of the  
23 species in the community (‘All ancestral’), a pre-exposed population for one 
three abundant species, and a community with pre-exposed populations of all 
community members. The t-SNE axis units are arbitrary.
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